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Objectives

Basal friction remains a poorly understood aspect of ice dynamics. This parameter is crucial to better understand and model
glacier evolution. Here, we use ice surface velocities of Pine Island Glacier from year 1996 derived from SAR interferometry to
infer basal drag using an inverse control method on fully coupled thermomechanical models (i.e. for each iteration, a thermo-
mechanical equilibrium is sought). We apply these inverse control methods on three different ice flow models corresponding to
different levels of approximation of ice flow equations while keeping the same friction law given by Paterson[5]:
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• −→
ub is the velocity component parallel to the bedrock surface

• Neff is the effective pressure at the base
• −→

τb is the friction stress component parallel to the bedrock surface
• k, r and s are constants

We then compare the resulting basal drag patterns given by the three models to recommend the degree of precision required to
properly model the glacier.
We used the following data:

• DEM from Bamber[1]
• Thicknesses from AGASEA[8]
• Velocities from Rignot 1996
• Surface temperature from Giovinetto[2]
• Geothermal flux from Maule[4]

Models

• Navier-Stokes: 3d incompressible (black, green and red)
• Pattyn/Blatter’s higher order model[6] (black and green)
• MacAyeal’s shelfy stream model[3] (black)
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The thermal model used in this experiment is:

∂T

∂t
= −v · ∇T +

kth

ρc
∆T +

Φ

ρc
(2)

Anisotropic mesh generation

In any space of dimension d, if the solution u(x) is approximated by u
h(x), with piecewise linear interpolation, a local approx-

imation error can be defined over an element E to be:

error =
˛̨
˛u(x)− u

h(x)
˛̨
˛ ≤ cdh

2
E sup

(x,y)∈E
|Hu(x, y)| (3)

• hE length of the element edge
• cd constant that depends only on the space dimension (1/8 in 1d, 2/9 in 2d)
• Hf (x, y) Hessian matrix of u, |Hu(x, y)| its spectral norm

An optimized mesh can thus be defined as a mesh for which the maximum error estimate is equidistributed over all elements:

∀E h
2
E sup

(x,y)∈E
|Hu(x, y)| = Cte (4)

1. Observed velocity [m/yr] 2. Adapted mesh

Experiment Results

1. MacAyeal basal drag [kPa] 2. Pattyn basal drag [kPa] 3. Stokes basal drag [kPa]
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1 Results

We observe that the patterns of basal drag of the three
models are very similar. The differences between the ob-
served and modeled velocities are mainly located on the
ice stream close to the grounding line where the glacier
speed reaches its maximum. Overall, the three models
manage to reproduce the observations with good accu-
racy (the following table shows the misfits between the
modeled velocities and the observations):

Model Ice sheet Ice stream

MacAyeal’s misfit 27 m/yr 62 m/yr

Pattyn’s misfit 11.1 m/yr 22.9 m/yr

Stokes’s misfit 10.4 m/yr 19.5 m/yr

This means that the assumptions of no vertical shear
made in MacAyeal’s model remain valid almost every-
where and this model is a good approximation of the
glacier flow on most of the domain.

2 Discussion

Nevertheless, close to the grounding line the bed becomes
very steep (3%) and it is there that the differences in basal
drag patterns between the models arise. We observe that
Stokes’s shows almost no friction whereas MacAyeal’s and
Pattyn’s models require strong basal friction to reproduce the
observations. This is due to the fact that in a 3d model, the
steep bed is slowing down the ice flow by itself and this effect
is not taken into account by the other models as the vertical
equation of the momentum balance is reduced to its simpler
form.
Interestingly, the basal drag given by Stokes is close to zero
over the distance of the grounding line retreat[7].

3 Conclusion

The three models seem to reproduce well the observed ve-
locities and we find good agreement in the basal drag pat-
terns. Nevertheless, the results show that close to the
grounding line 3d effects cannot be neglected as the bed be-
comes steeper, which invalidates the assumptions made in
MacAyeal’s shelfy stream model and Pattyn’s higher order
model.

7. Friction comparison on a flow line
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